The topology of continua that are approximated by disjoint subcontinua.

Christopher Mouron

Department of Mathematics and Computer Science
Rhodes College
Memphis, TN 38112

Department of Mathematics
The University of Alabama at Birmingham
Birmingham, AL 35254

Abstract

Suppose that \(\{Y_i\}_{i=1}^{\infty} \) is a collection of disjoint subcontinua of continuum \(X \) such that \(\lim_{i \to \infty} d_H(Y_i, X) = 0 \) where \(d_H \) is the Hausdorff metric. Then the following are true:

1. \(X \) is non-Suslinean.
2. If each \(Y_i \) is chainable and \(X \) is finitely cyclic, then \(X \) is indecomposable or the union of 2 indecomposable subcontinua.
3. If \(X \) is \(G \)-like, then \(X \) is indecomposable.
4. If \(\{Y_i\}_{i=1}^{\infty} \) all lie in the same ray and \(X \) is finitely cyclic, then \(X \) is indecomposable.

Key words: inverse limit, indecomposable continuum, non-Suslinean continuum

1991 MSC: Primary: 54H20, 54F50, Secondary: 54E40

1 Introduction

Many continua (such as the buckethandle continuum) that admit homeomorphisms with interesting dynamics (such as being continuum-wise expansive) have the property that there exist disjoint subcontinua limiting to the whole...
continuum [10]. Suppose that X is a continuum (compact, connected metric space) such that there exists a one-to-one map $f : [0, \infty) \rightarrow X$ with the property that $X = \bigcap_{x=0}^{\infty} f([x, \infty))$. Such a continuum is often called “a ray limiting on itself”. In [2], Curry showed that if X is a plane continuum that separates the plane into a finite number of complementary domains, then X must be indecomposable. This paper generalizes his result with the following theorem:

Theorem 1 \{\{Y_i\}_{i=1}^{\infty}\} is a collection of disjoint subcontinua of continuum X such that $\lim_{i \to \infty} d_H(Y_i, X) = 0$ where d_H is the Hausdorff metric. Then the following are true:

1. X is non-Suslinean.
2. If each Y_i is chainable and X is finitely cyclic, then X is indecomposable or the union of 2 indecomposable subcontinua.
3. If X is G-like, then X is indecomposable.
4. If $\{Y_i\}_{i=1}^{\infty}$ all lie in the same ray and X is finitely cyclic, then X is indecomposable.

Also, examples are given to show that the previous theorem is sharp.

A continuum is decomposable if it is the union of 2 of its proper subcontinua. A continuum is indecomposable if it is not decomposable. A continuum is hereditarily decomposable if every nondegenerate subcontinuum is decomposable. A continuum is

1. chainable (also known as arc-like)
2. tree-like
3. G-like
4. k-cyclic

if it is the inverse limit of

1. arcs
2. trees
3. topological graphs homeomorphic to the same graph G
4. topological graphs each having at most k distinct simple closed curves

respectively. For more on inverse limits see [3], [5] or [9] and on these definitions see [7]. To prove the main result, we need results on the topology of inverse limits of graph continua. To obtain this, we must prove technical results on graph continua.
2 Results on Graph Continua

A continuum X is a *graph continuum* if it can be expressed as the union of finitely many arcs any two of which can intersect in at most one or both of their end points. If $x \in X$, then define the *degree* of x, denoted $\text{deg}(x)$, to be the number n such that

1. For every $\epsilon > 0$ there exists an open set U_x which contains x such that $\text{diam}(U_x) < \epsilon$ and $|\text{Bd}(U_x)| = n$.
2. There exists a $\delta > 0$ such that if V_x is an open set which contains x and $\text{diam}(V_x) < \delta$ then $|\text{Bd}(V_x)| \geq n$.

Let \mathcal{V} be a finite set of X. \mathcal{V} is a *set of vertices of X* if it has the following properties (called the *properties of a set of vertices*):

1. Every component of $X - \mathcal{V}$ is homeomorphic to the open interval,
2. The closure of every component of $X - \mathcal{V}$ is homeomorphic to an arc.

Notice that a set of vertices is not unique (this is different from combinatorial graphs) and for each graph continuum, there exists a set of vertices. We denote a continuum X with a vertex set \mathcal{V} by (X, \mathcal{V}). Also notice that if $\text{deg}(x) \neq 2$ then, $x \in \mathcal{V}$ for any set of vertices \mathcal{V}. Each component of $X - \mathcal{V}$ is called an *edge* of (X, \mathcal{V}).

The goal of this section is to prove the following theorems:

Theorem 2 Let G be a graph continuum with k distinct simple closed curves, $p = 32k^2 + 4k + 7$ and $\{[a_i, b_i]\}_{i=1}^p$ be a disjoint collection of nondegenerate subarcs of G. Then there exists a collection $\{m_i\}_{i=1}^p$, where $m_i \in [a_i, b_i]$, with the following property:

If H, K is a decomposition of G, then there exists a $j \in \{1, \ldots, p\}$ (dependent only on H and K) such that one of the following is true:

1. $[a_j, b_j] \subset H$,
2. $[a_j, b_j] \subset K$,
3. $[a_j, m_j] \subset H$ and $[m_j, b_j] \subset K$,
4. $[a_j, m_j] \subset K$ and $[m_j, b_j] \subset H$.

Theorem 3 Let (G, \mathcal{V}) be a graph continuum. If A_1, A_2, A_3 are arcs contained in the same edge (a, b) then for every decomposition H, K, there exists an $i \in \{1, 2, 3\}$ such that $A_i \subset H$ or $A_i \subset K$.

These theorems will aid in applying Kuykendall's Theorem (see Theorem 22) to inverse limits to determine if a continuum is indecomposable or the union
of two indecomposable subcontinua. To prove these theorems we need several technical results:

Proposition 4 If \((G, V)\) is a graph continuum with at least 2 simple closed curves, then each simple closed curve must have a vertex with degree of at least 3.

PROOF. Suppose that \(S\) is a simple closed curve of \(G\) such that every point of \(S\) has degree 2. Then \(S\) is a component of \(G\). Since, \(G\) is connected we obtain \(S = G\). So \(G\) only has one simple closed curve, which is a contradiction.

\(V\) is a **minimal set of vertices** for \(G\) if no proper subset of \(V\) satisfies all of the properties of a set of vertices.

Proposition 5 Let \(G\) be a graph continuum with at least 2 simple closed curves and let \(V\) be a minimal set of vertices for \(G\). Then each simple closed curve of \(G\) contains at most 1 element of \(V\) with degree 2.

PROOF. Suppose that \(S\) is a simple closed curve of \(G\) that has 2 vertices, say \(v_1\) and \(v_2\) of \(V\) with degree 2. By Proposition 4, \(S\) must have at least 1 vertex of degree greater than 2. Thus, there exists an \(a \in S \cap V\) where deg\((a) > 2\) such that \((a,v_i)\) is an edge of \((G, V)\) contained in \(S\) for some \(i \in \{1, 2\}\). Let \((v_i, b)\) be the other edge contained in \(S\) adjacent to \(v_i\) and notice that \(a \neq b\). Let \(V' = V - \{v_i\}\). Then it is easily checked that \(V'\) has the properties of a set of vertices. This contradicts the fact that \(V\) is a minimal set of vertices.

If \(V\) is a set of vertices, let \(V^n\) denote the subset of \(V\) such that each element has degree \(n\).

Corollary 6 Let \(G\) be a graph continuum and let \(V\) be a minimal set of vertices for \(G\). If \(C\) is the set of simple closed curves contained in \(G\), then \(|C| \geq |V^2|\).

PROOF. If \(G\) has no simple closed curves, then \(V^2\) is empty. If \(G\) has one simple closed curve, then \(V^2\) has at most 2 elements. If \(G\) has more than one simple closed curve, then the result follows from Proposition 5.

If \([a, b]\) is an arc in graph continuum \(G\), then denote \((a, b) = [a, b] - \{a, b\}\). Note that the interior of \([a, b]\) is not necessarily \((a, b)\) since there may be points in
Suppose that Y is a connected set in G that contains (a, b) and with $a, b \not\in Y$. We say that Y is a $T(a, b)$-subset of G if every simple closed curve of G that intersects Y contains (a, b).

Proposition 7 Suppose that Y is a $T(a, b)$-subset of G. Then Y is uniquely arcwise connected.

PROOF. Suppose on the contrary that there exist arcs $[x, y], [x, y]' \subset Y$ such that $[x, y] \neq [x, y]'$. Then there exists a simple closed curve $S \subset [x, y] \cup [x, y]' \subset Y$. Thus $(a, b) \subset S$. However, since S is closed, that implies that $a \in S \subset Y$ which is a contradiction. □

Proposition 8 If X is a graph continuum, then every edge (a, b) of (X, V) is a $T(a, b)$-subset of X.

PROOF. Every simple closed curve S is the union of edges and vertices of X of (X, V). Thus if S intersects an edge, it must contain that edge. □

Proposition 9 Let (X, V) be a graph continuum, (a, b) be an edge of (X, V) and S be a simple closed curve of X. If $(a, b) \cap S \neq \emptyset$, then $(a, b) \subset S$.

PROOF. Suppose that (a, b) is not a subset of S. Then there exists an $x \in (a, b) - S$ and $y \in (a, b) \cap S$ such that $[x, y] \subset (a, b)$ and $[x, y] \cap S = \{y\}$. But then $\deg(y) \geq 3$ and hence $y \in V$. Thus, (a, b) is not an edge of (X, V) which is a contradiction. □

Proposition 10 Let (X, V) be a graph continuum, P be a subcontinuum X that contains all of the simple closed curves of X and $V(P)$ be a minimal set of vertices for P such that $V(P) \subset V$. Let Y be a component of $X - V(P)$. Then one of the following must be true:

1. $Y \cap P = \emptyset$
2. $Y \cap P$ is an edge of $(P, V(P))$.

PROOF. Since $V(P)$ is a vertex set for P, every component of $P - V(P)$ is an edge for $(P, V(P))$. Since Y is connected, if Y intersects a component of $P - V(P)$ it must contain it. Thus Y must contain an edge of $(P, V(P))$. If $Y - P = \emptyset$, then Y must be a edge for P. So suppose that $Y - P \neq \emptyset$ and $Y \cap P$ is disconnected. Then there exist $x, z \in Y \cap P$ and $y \in Y - P$ such that
\[[y, x] \cup [z, y] \subset Y, \ [y, x] \cap P = \{x\}, \ [y, x] \cap [z, y] = \{y\} \text{ and } [z, y] \cap P = \{z\}. \]

Let \([x, z]\) be an arc in \(P\). Then \([y, x] \cup [x, z] \cup [z, y]\) is a simple closed curve that is not contained in \(P\) which is a contradiction. Hence \(Y \cap P\) is a subset of some edge of \(P\). \(\Box\)

Lemma 11 Let \((X, V)\) be a graph continuum, \(P\) be a subcontinuum of \(X\) that contains all of the simple closed curves of \(X\) and \(V(P)\) be a minimal set of vertices for \(P\) such that \(V(P) \subset V\). Let \(Y\) be a component of \(X - V(P)\). Then \(Y\) is a \(T(a, b)\)-subset for some \(a, b \in V\).

PROOF. By Proposition 10, if \(Y \cap P \neq \emptyset\) then \(Y \cap P = (a, b)\) is an edge of \((P, V(P))\). If \(S\) is a simple closed curve of \(X\) such that \(S \cap Y \neq \emptyset\), then \(S \cap (a, b) \neq \emptyset\) since \(S \subset P\). Hence, by Proposition 9, \((a, b) \subset S\) and it follows that \(Y\) is a \(T(a, b)\)-subset of \(X\). On the other hand, suppose that \(Y \cap P = \emptyset\) and that \(S\) is a simple closed curve of \(X\). Then \(Y \cap S = \emptyset\) and hence, \(Y\) is a \(T(a, b)\)-subset of \(X\). \(\Box\)

The following well-known theorem will be very useful.

Theorem 12 [8] Boundary Bumping Theorem: If \(K\) is a component of a proper open subset \(V\) of a continuum \(X\) then \(\text{Bd}(V) \cap K \neq \emptyset\).

Lemma 13 Let \(Y\) be a \(T(a, b)\)-subset in graph continuum \(X\) and let \(H\) be a subcontinuum of \(X\). Then \(Y \cap H\) has at most 2 components.

PROOF. Suppose on the contrary that there exist 3 pairwise disjoint sets \(H_1, H_2, H_3\) such that each is the union of components of \(Y \cap H\) and such that \(Y \cap H = \bigcup_{i=1}^3 H_i\).

Claim: At least 2 of the following must be true:

1. There exists \(x_1 \in \text{bd}(H_1)\) and \(y_2 \in \text{bd}(H_2)\) such that \([x_1, y_2] \subset H \cap (X - Y)\)
2. There exists \(x_2 \in \text{bd}(H_2)\) and \(y_3 \in \text{bd}(H_3)\) such that \([x_2, y_3] \subset H \cap (X - Y)\)
3. There exists \(x_3 \in \text{bd}(H_3)\) and \(y_1 \in \text{bd}(H_1)\) such that \([x_3, y_1] \subset H \cap (X - Y)\).

Suppose on the contrary that 2) and 3) are false. Pick \(x \in H_3\) and \(y \in H_2\). Since \(H\) is arcwise connected, there exists an arc \([x, y] \subset H\). Then by the Boundary Bumping Theorem, \([x, y] \cap \text{Bd}(H_3) \neq \emptyset\) and \([x, y] \cap (\text{Bd}(H_1) \cup \text{Bd}(H_2)) \neq \emptyset\). Thus, there exists a subarc \([x', y']\) of \([x, y]\) such that \([x', y'] \cap \overline{H_3} = \{x'\} \subset \text{Bd}(H_3)\) and
Without loss of generality, suppose that 1) and 2) are true in the previous claim and let H'_1, H'_2, H''_2 and H'_3 be components of H_1, H_2 and H_3 such that $x_1 \in \text{Bd}(H'_1)$ and $y_2 \in \text{Bd}(H''_2)$, $x_2 \in \text{Bd}(H''_2)$ and $y_3 \in \text{Bd}(H'_3)$. (Note that H'_2, H''_2 are not necessarily distinct.) Then there exist arcs $[z_1, z_2], [z'_2, z_3] \subset Y$ such that

(1) $H'_1 \cap [z_1, z_2] = \{z_1\}$
(2) $H''_2 \cap [z_1, z_2] = \{z_2\}$
(3) $H'_2 \cap [z'_2, z_3] = \{z'_2\}$
(4) $H'_3 \cap [z'_2, z_3] = \{z_3\}$.

Furthermore, there exist half open arcs

(1) $(x_1, z_1) \subset H'_1$
(2) $(y_2, z_2) \subset H''_2$
(3) $(x_2, z'_2) \subset H'_2$
(4) $(y_3, z'_2) \subset H'_3$.

Thus $[x_1, y_2] \cup (x_1, z_1) \cup [z_1, z_2] \cup [z_2, y_2]$ and $[x_2, y_3] \cup (x_2, z'_2) \cup [z'_2, z_3] \cup [z_3, y_3]$ are simple closed curves that intersect Y. Since Y is a $T(a, b)$-subset it follows that

$$(x_1, z_1) \cup [z_1, z_2] \cup [z_2, y_2] = (a, b) = (x_2, z'_2) \cup [z'_2, z_3] \cup [z_3, y_3].$$

Thus $(x_1, z_1) \cap (x_2, z'_2) \neq \emptyset$ or $(x_1, z_1) \cap [z_3, y_3) \neq \emptyset$. Hence $H_1 \cap H_2 \neq \emptyset$ or $H_1 \cap H_3 \neq \emptyset$, which contradicts H_1, H_2 and H_3 as disjoint. □

If \mathcal{A} is a collection of subsets of X, then define $\mathcal{A}^* = \bigcup_{A \in \mathcal{A}} A$. If X is a connected space, then a collection of connected subspaces $\{H_1, ..., H_n\}$ is an n-decomposition if $X = \{H_1, ..., H_n\}^*$ but $\{\{H_1, ..., H_n\} - \{H_i\}\}^*$ is a proper subset of X for each $i \in \{1, ..., n\}$. A 2-decomposition is simply called a decomposition.

Lemma 14 Let Y be a uniquely arcwise connected subset of a graph continuum X with disjoint arcs $\{[a_i, b_i]\}_{i=1}^4$. Then for each i there exists $m_i \in [a_i, b_i]$ such that for any 4-decomposition $\{H_j\}_{j=1}^4$ of Y there exists an $i \in \{1, ..., 4\}$ such that at least one of the following is true:

(1) There exists a $j \in \{1, ..., 4\}$ such that $[a_i, b_i] \in H_j$
(2) There exist $j_1, j_2 \in \{1, ..., 4\}$ such that $[a_i, m_i] \in H_{j_1}$ and $[m_i, b_i] \in H_{j_2}$.

7
PROOF. Notice that since Y is uniquely arcwise connected, if $a_i, b_i \in H_j$ for some j then $[a_i, b_i] \subset H_j$ and 1) is satisfied. So from hereafter suppose that a_i, b_i are not both in H_j for any j.

Let $\{[p_i, m_i]\}_{i=2}^4$ be the unique arcs in Y such that $[p_2, m_2] \cap [a_1, b_1] = \{p_2\}$, $[p_3, m_3] \cap ([a_1, b_1] \cup [a_2, b_2]) = \{p_3\}$, $[p_4, m_4] \cap ([a_1, b_1] \cup [a_2, b_2] \cup [a_3, b_3]) = \{p_4\}$, and $[p_i, m_i] \cap [a_i, b_i] = \{m_i\}$ for each $i \in \{2, 3, 4\}$.

The following claim follows from the fact that Y is uniquely arcwise connected:

Claim: If $[a_\alpha, b_\alpha] \cap H_j \neq \emptyset$ and $[a_\beta, b_\beta] \cap H_j \neq \emptyset$ where $\alpha < \beta$ then $[p_\beta, m_\beta] \subset H_j$ and hence $m_\beta \in H_j$.

Since $\bigcup_{j=1}^4 H_j = Y$, there exists a partition $\{P_j\}_{j=1}^4$ of $\{a_i, b_i\}_{i=1}^4$ such that $P_j \subset H_j$ for each j. If for some j $|P_j| > 4$, then by the pigeon-hole principal there exists an i such that $a_i, b_i \in H_j$ which contradicts the assumption. Thus, we may assume that $|P_j| \leq 4$ for each j. There are many cases. However, all are of the form of one of the following cases:

Case 1: $|P_1| = 4$, $|P_2| \geq 2$. Without loss of generality we may assume $P_1 = \{a_{i_1}, a_{i_2}, a_{i_3}, a_{i_4}\}$ and $P_2 = \{b_{i_1}, b_{i_2}\}$ where $i_1 < i_2$. Then it follows from the claim that $m_{i_2} \in H_1$ and $m_{i_2} \in H_2$. Thus, since Y is uniquely arcwise connected we have $[a_{i_2}, m_{i_2}] \subset H_1$ and $[m_{i_2}, b_{i_2}] \subset H_2$.

Case 2: $|P_1| = 3$, $|P_2| = 3$.

Without loss of generality we may assume $P_1 = \{a_{i_1}, a_{i_2}, a_{i_3}\}$ and $P_2 = \{b_{k_1}, b_{k_2}, b_{k_3}\}$ where $i_1 < i_2 < i_3$ and $k_1 < k_2 < k_3$. Thus, by the pigeon-hole principal, there exist $\alpha_1, \alpha_2, \alpha_3$ such that $i_{\alpha_1} = k_{\beta_1}$ and $i_{\alpha_2} = k_{\beta_2}$. Without loss of generality assume $i_{\alpha_1} < i_{\alpha_2}$. It follows from the claim that $m_{i_{\alpha_2}} \in H_1 \cap H_2$. Hence, $[a_{i_{\alpha_2}}, m_{i_{\alpha_2}}] \subset H_1$ and $[m_{i_{\alpha_2}}, b_{i_{\alpha_2}}] \subset H_2$.

Case 3: $|P_1| = 3$, $|P_2| = 2$, $|P_3| = 2$.

Without loss of generality we may assume $P_1 = \{a_{i_1}, a_{i_2}, a_{i_3}\}$, $P_2 = \{c_{k_1}, c_{k_2}\}$ and $P_3 = \{c_{k_3}, c_{k_4}\}$ where $i_1 < i_2 < i_3$, $k_1 < k_2$, $k_3 < k_4$, and $c_{k_i} \in \{a_{k_i}, b_{k_i}\}$. If $k_2 = k_3$ then it follows from the claim that $m_{k_2} \in H_2 \cap H_3$ and without loss of generality we may assume that $c_{k_2} = a_{k_2}$ and $c_{k_4} = b_{k_4} = b_{k_2}$ since c_{k_2} and c_{k_4} are distinct. Hence $[a_{k_2}, m_{k_2}] \subset H_2$ and $[m_{k_2}, b_{k_2}] \subset H_3$.

Next assume that $k_2 \neq k_3$. Thus, by the pigeon-hole principal, there exist $\alpha \in \{2, 3\}$ and $\beta \in \{2, 4\}$ such that $i_{\alpha} = k_{\beta}$. Since $i_1 < i_{\alpha}$, it follows from the
claim that \(m_i \in H_1 \cap H_{\beta/2+1} \). Hence, \([a_{i_a}, m_i] \subset H_1 \) and \([m_i, b_{i_a}] \subset H_{\beta/2+1} \) since \(a_{i_a} \) and \(c_{i_a} \) must be distinct.

Case 4: \(|P_1| = 2, |P_2| = 2, |P_3| = 2, |P_4| = 2\).

Then by the pigeon-hole principle there exist distinct \(j_1, j_2 \) such that \(P_{j_1} = \{c_{i_1}, a_4\} \) and \(P_{j_2} = \{c_{i_2}, b_4\} \) where \(i_1 < 4 \) and \(i_2 < 4 \). Hence it follows from the claim that \(m_4 \in H_{j_1} \cap H_{j_2} \) and thus \([a_4, m_4] \subset H_{j_1} \) and \([m_4, b_4] \subset H_{j_2} \). □

A graph continuum with no simple closed curves is a tree. If \((G, \mathcal{V})\) is a graph continuum with vertex set \(\mathcal{V} \), then let \(\mathcal{E}(\mathcal{V}) \) and \(\mathcal{C} \) be the set of edges and simple closed curves of \((G, \mathcal{V})\) respectively. The following theorem is well known:

Theorem 15 \([4]\) If \(G \) is a tree, then \(|\mathcal{E}(\mathcal{V})| = |\mathcal{V}| - 1\).

Corollary 16 If \((G, \mathcal{V})\) is a graph continuum, then \(|\mathcal{C}| \geq |\mathcal{E}(\mathcal{V})| - |\mathcal{V}| + 1\).

Proof. Suppose that \(|\mathcal{E}(\mathcal{V})| > |\mathcal{V}| - 1\). Then by Theorem 15, there exists a simple closed curve \(C_1 \) in \(G \). Let \(E_1 \) be an edge in \(C_1 \), \(G_1 = G - E_1 \) and \(\mathcal{E}_1 = \mathcal{E}(\mathcal{V}) - \{E_1\} \). Notice that \(G_1 \) is still connected. If \(|\mathcal{E}_1| = |\mathcal{V}| - 1\), then \(|\mathcal{C}| \geq 1 = |\mathcal{E}(\mathcal{V})| - |\mathcal{V}| + 1\) and we are done.

On the other hand suppose that \(G_k, \{E_1, ..., E_k\}, \{C_1, ..., C_k\} \), and \(\mathcal{E}_k \) have been found and that \(|\mathcal{E}_k| > |\mathcal{V}| - 1\). Then again by Theorem 15, there exists a simple closed curve \(C_{k+1} \) in \(G_k \). Let \(E_{k+1} \) be an edge in \(C_{k+1} \), \(G_{k+1} = G - E_{k+1} \) and \(\mathcal{E}_{k+1} = \mathcal{E}(\mathcal{V}) - \{E_{k+1}\} \). Notice that \(G_{k+1} \) is still connected.

Eventually for some \(n \), \(|\mathcal{E}_n| = |\mathcal{V}| - 1\). Thus, \(|\mathcal{E}(\mathcal{V})| - |\mathcal{V}| + 1 = n\). Furthermore, by the construction, \(E_i \) is not an edge of \(C_j \) if \(i < j \). Thus \(C_i \neq C_j \) whenever \(i \neq j \). Hence, \(\{C_1, ..., C_n\} \) is a collection of distinct simple closed curves of \(G \). Therefore

\[|\mathcal{C}| \geq n = |\mathcal{E}(\mathcal{V})| - |\mathcal{V}| + 1.\]

□

A graph continuum \((G, \mathcal{V})\) is complete if for every distinct pair of vertices \(a, b \) there exists an edge \((a, b)\) in \((G, \mathcal{V})\). The following theorem is well known:

Theorem 17 \([4]\) If \((G, \mathcal{V})\) is a complete graph then

\[|\mathcal{E}(\mathcal{V})| = \frac{|\mathcal{V}|(|\mathcal{V}| - 1)}{2}.\]

Corollary 18 Let \((G, \mathcal{V})\) be a graph continuum. Then \(|\mathcal{V}| \geq \sqrt{2|\mathcal{E}(\mathcal{V})|} \).
PROOF. Since G is a graph, it must be a subgraph of the complete graph on its $|V|$ vertices. Hence,

$$|E(V)| \leq \frac{|V|(|V| - 1)}{2}.$$

Thus, it follows that

$$|V| \geq \sqrt{2|E(V)|}.$$

□

Lemma 19 Let (G, V) be a graph continuum such that the $\text{deg}(v) \geq 2$ for every $v \in V$ and V is a minimal vertex set. Then

$$|C| \geq \frac{1}{4}|V|,$$

where C is the set of simple closed curves of G.

PROOF. Since every edge has 2 endpoints which are vertices we have

$$2|E(V)| = \sum_{v \in V} \text{deg}(v) \geq 3|V - V^2| + 2|V^2|.$$

So it follows from Corollary 16 that

$$|C| \geq |E(V)| - |V| + 1 \geq \frac{3}{2}|V| - \frac{3}{2}|V^2| + |V^2| - |V| + 1 > \frac{1}{2}|V| - \frac{1}{2}|V^2|.$$

Also, it follows from the fact that V is minimal and Corollary 6 that $|C| \geq \frac{1}{2}|V^2|$. Thus after adding the inequalities we get

$$2|C| \geq \frac{1}{2}|V|$$

and the lemma follows.

□

Proof of Theorem 2: From Lemma 13 and Lemma 14, it suffices to show that there exists a $T(a, b)$-subset Y of G which contains at least 4 elements of $\{[a_i, b_i]\}_{i=1}^p$. There are 3 cases to consider:

Case 1: G is a tree.
Then G contains 2 points, say a and b, that have degree 1. Thus $Y = G - \{a, b\}$
is a $T(a, b)$-subset. Since $p \geq 7$, it follows that there are at least 4 elements of $\{[a_i, b_i]\}_{i=1}^p$ contained in Y.

Case 2: G contains exactly 1 simple closed curve.
Let S be the unique simple closed curve of G and chose $a, b \in S - \bigcup_{i=1}^p [a_i, b_i]$. Then each component of $G - \{a, b\}$ is a $T(a, b)$-subset. So by the fact that $p \geq 7$ and the pigeon-hole principle, one of the components of $G - \{a, b\}$, say Y, contains 4 elements of $\{[a_i, b_i]\}_{i=1}^p$.

Case 3: G contains k simple closed curves where $k \geq 2$.
Let P be a maximum subcontinuum of G such that $\deg(x) \geq 2$ for all $x \in P$. Let $\mathcal{V}(P)$ be a minimum vertex set for P. It follows from Lemma 19 that $|\mathcal{V}(P)| \leq 4k$ and from Corollary 18 that $|E(\mathcal{V}(P))| \leq 8k^2$. Let $\mathcal{Q} = \{[a_i, b_i] | [a_i, b_i] \cap \mathcal{V}(P) \neq \emptyset\}$ and $\mathcal{T} = \{[a_i, b_i]\}_{i=1}^p - \mathcal{Q}$. Since $\{[a_i, b_i]\}_{i=1}^p$ are all disjoint, we may conclude that $|\mathcal{Q}| \leq |\mathcal{V}(P)| \leq 4k$ and hence $|\mathcal{T}| = p - |\mathcal{Q}| \geq 2\cdot 3k^2 + 4k + 7 - 4k > 4(8k^2)$.

Since $\mathcal{V}(P)$ is a minimal vertex set, notice that $G - \mathcal{V}(P)$ has the same number of components as $P - \mathcal{V}(P)$ which is equal to it number of edges $|E(\mathcal{V}(P))|$. Thus the number of components of $G - \mathcal{V}(P)$ is less than or equal to $8k^2$. Hence by the pigeonhole principle, there exist distinct $\{[a_i, b_i]\}_{j=1}^4 \in \mathcal{T}$ that are all in the same component, say Y, of $G - \mathcal{V}(P)$. By Lemma 11, Y is a $T(a, b)$-subset and the theorem follows. \qed

Proof of Theorem 3: Let $A_i = [a_i, b_i]$ where $a < a_1 < b_1 < a_2 < b_2 < a_3 < b_3 < b$. Suppose that $H \cap A_i \neq \emptyset$ for each $i \in \{1, 2, 3\}$. (Otherwise, $A_i \subset K$ for some i and we are done.) Since edge (a, b) is a $T(a, b)$-subset by Proposition 8, it follows from Lemma 13 that $H \cap (a, b)$ has at most 2 components. Hence there are 2 cases:

Case 1: $H \cap (a, b)$ has 1 component. Then $b_1, a_3 \in H \cap (a, b)$. Thus $[a_2, b_2] \subset H \cap (a, b) \subset H$.

Case 2: $H \cap (a, b)$ has 2 components. Let H_a be the component such that $a \in \overline{H_a}$ and H_b be the component such that $b \in \overline{H_b}$. If $H_a \cap [a_2, b_2] \neq \emptyset$ then $[a_1, b_1] \subset H_a \subset H$. Otherwise, $H_b \cap [a_2, b_2] \neq \emptyset$ which implies that $[a_3, b_3] \subset H_b \subset H$. \qed
3 Inverse limits and indecomposability

Let \(\{X_i\}_{i=1}^{\infty} \) be collection of topological spaces and \(f_i : X_{i+1} \to X_i \) be a continuous function for each \(i \). The inverse limit of \((X_i, f_i)\) is a new topological space:

\[
\hat{X} = \lim_{\leftarrow} \{X_i, f_i\}_{i=1}^{\infty} = \{ (x_i)_{i=1}^{\infty} \mid x_i \in X_i \text{ and } f_i(x_{i+1}) = x_i \}.
\]

\(\hat{X} \) has the subspace topology induced on it by \(\prod_{i=1}^{\infty} X_i \). If \((x_i)_{i=1}^{\infty}, (y_i)_{i=1}^{\infty} \in \hat{X} \) then define the metric on \(\hat{X} \) by

\[
\hat{d}((x_i)_{i=1}^{\infty}, (y_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^{i-1}}
\]

where \(d_i \) is the metric on \(X_i \) and \(\{\text{diam}(X_i)\}_{i=1}^{\infty} \) is bounded. Also, let \(\pi_i : \hat{X} \to X_i \) be the \(i \)th coordinate map.

If each \(X_i \) is a topological graph with at most \(k \) distinct simple closed curves, then \(\hat{X} \) is said to be \(k \)-cyclic or finitely cyclic. If each \(X_i \) is homeomorphic to the same topological graph \(G \), then \(\hat{X} \) is said to be \(G \)-like.

The following is the Anderson-Choquet embedding theorem:

Theorem 20 [1] Let the compact sets \(\{M_i\}_{i=1}^{\infty} \) be subsets of a given compact metric space \(X \), and let \(f_j^i : M_j \to M_i \) be continuous surjections satisfying \(f_k^i = f_j^i \circ f_j^k \) for each \(i < j < k \). Suppose that

1. for every \(i \) and \(\delta > 0 \) there exists a \(\delta' > 0 \) such that if \(i < j \), \(p \) and \(q \) are in \(M_j \), and \(d(f_j^i(p), f_j^i(q)) < \delta \) then \(d(p, q) < \delta' \)
2. for every \(\epsilon > 0 \) there exists an integer \(k \) such that if \(p \in M_k \) then

\[
\text{diam} \left(\bigcup_{k<j} (f_j^k)^{-1}(p) \right) < \epsilon.
\]

Then, then inverse limit \(M = \lim_{\leftarrow} \{M_i, f_i\}_{i=1}^{\infty} \) is homeomorphic to \(Q = \bigcap_{i=1}^{\infty} (\bigcup_{k \leq i} M_k) \), which is the sequential limiting set of the sequence \(\{M_i\}_{i=1}^{\infty} \).

Next is a variation of the Anderson-Choquet embedding theorem which will be useful. For completeness, its proof is given in the Appendix:

Theorem 21 Suppose that \(X \) is an 1-dimensional \(k \)-cyclic continuum such
that there exist disjoint subcontinua \(\{X_j\}_{j=1}^{\infty} \) such that \(\lim_{j \to \infty} d_H(X, X_j) = 0 \). Then there exist

1. positive numbers \(\{\epsilon_i\}_{i=1}^{\infty} \) such that \(\lim_{i \to \infty} \epsilon_i = 0 \)
2. \(Y = \lim_{\leftarrow} \{G_i, f_i\}_{i=1}^{\infty} \) where each \(G_i \) is a graph
3. disjoint subcontinua \(\{Y_j\}_{j=1}^{\infty} \) of \(Y \)

such that

1. \(Y \) is homeomorphic to \(X \)
2. each \(G_i \) has at most \(k \) simple closed curves
3. \(\{\pi_i(Y_n)\}_{i=1}^{n} \) are all disjoint in \(G_i \)
4. \(d_H(G_i, f_k^k(\pi_k(Y_n))) < \epsilon_n \) for every \(k \) and \(n \geq i \).

Furthermore, if \(Y_n \) is chainable, then \(\pi_i(Y_n) \) is an arc for each \(i \geq n \).

The following is a well-known theorem due to Kuykendall:

Theorem 22 [6] Let \(X = \lim_{\leftarrow} \{X_n, f_n\}_{n=1}^{\infty} \) be an inverse limit of continua. \(X \) is indecomposable if and only if for each \(n \) and \(\epsilon > 0 \) there exists \(m > n \) such that if \(A_m \) and \(B_m \) are two subcontinua of \(X_m \) with \(X_m = A_m \cup B_m \), then at least one of the following is true:

1. \(d_H(f_m^m(A_m), X_n) < \epsilon \)
2. \(d_H(f_m^m(B_m), X_n) < \epsilon \).

If \(A \) and \(B \) are subsets of continuum \(G \), then let \(I(A, B) \) denote a subcontinuum of \(G \) minimal about \(A \) and \(B \). That is, \(A \cup B \subset I(A, B) \), but no proper subcontinuum of \(I(A, B) \) contains \(A \cup B \). Let \(G \) be a decomposable continuum and \(A, B \) be subsets of \(G \). We say that \(A, B \) has the decomposition containment property in \(G \) if for any decomposition \(H, K \) of \(G \), at least one of the following is true:

1. \(A \subset H \)
2. \(B \subset H \)
3. \(A \subset K \)
4. \(B \subset K \).

Proposition 23 Suppose that sets \(A, B \) have the decomposition containment property in graph continuum \(G \) and \(P \) is a subcontinuum of \(G \) that contains \(A \cup B \). Then \(A, B \) have the decomposition containment property in \(P \).

PROOF. Let \(E, F \) be a decomposition of \(P \). Let

\[
H = E \cup \bigcup \{C | C \text{ is a component of } G - P \text{ such that } C \cap E \neq \emptyset\}
\]
and

\[K = F \cup \bigcup \{ C \mid C \text{ is a component of } G - P \text{ such that } C \cap F \neq \emptyset \}. \]

Then \(H, K \) is a decomposition of \(G \). Thus, one of the following is true: \(A \subset H, B \subset H, A \subset K \) or \(B \subset K \). Without loss of generality assume \(A \subset H \). Then since \(A \subset P \), it follows that \(A \subset H \cap P = E \). \(\square \)

Lemma 24 Let \(X = \lim \{ G_i, f_i \}_{i=1}^{\infty} \) where each \(G_i \) is a graph. Suppose \(\{ \epsilon_i \}_{i=1}^{\infty} \) is a sequence of positive numbers that converges to \(0 \) and there exist disjoint arcs \(A_i, B_i \) of \(G_i \) with the following properties:

1. There exist decompositions \(A_i^H, A_i^K \) of \(A_i \) and \(B_i^H, B_i^K \) of \(B_i \) such that \(I(A_i^H, B_i^H) \) and \(I(A_i^K, B_i^K) \) are both arcs.
2. If \(H_i, K_i \) is any decomposition of \(G_i \), then one of the following must be true: \(A_i^H \subset H_i, A_i^K \subset K_i \), or \(B_i^H \subset H_i \) or \(B_i^K \subset K_i \).
3. If \(H_i, K_i \) is any decomposition of \(G_i \), then one of the following must be true: \(A_i^H \subset H_i, A_i^K \subset K_i \), or \(B_i^H \subset H_i \) or \(B_i^K \subset K_i \).
4. \(d_H(f_n^i(A_i), G_n) < \epsilon_i \) and \(d_H(f_n^i(B_i), G_n) < \epsilon_i \) for each \(i > n \).
5. \(d_S(f_n^i(A_i^H), I(A_i^H, B_i^H)) < \epsilon_i \), \(d_S(f_n^i(B_i^H), I(A_i^H, B_i^H)) < \epsilon_i \), \(d_S(f_n^i(A_i^K), I(A_i^K, B_i^K)) < \epsilon_i \), and \(d_S(f_n^i(B_i^K), I(A_i^K, B_i^K)) < \epsilon_i \).

Then \(X = H \cup K \) where \(H \) and \(K \) are indecomposable continua. (Note: It is possible that \(H = X \) or \(K = X \).)

PROOF. Let \(H_n^i = f_i^i(I(A_i^H, B_i^H)) \) and \(H_n = \bigcup_{i=1}^{\infty} H_n^i \).

Notice that

\[f_n(H_n) = f_n(\bigcup_{i=n+1}^{\infty} H_n^i) = \bigcup_{i=n+1}^{\infty} f_n(H_n^i) = \bigcup_{i=n}^{\infty} H_n^i = H_{n-1}. \]

Claim 1: For every \(\epsilon > 0 \) there exists \(I_\epsilon^n \) such that \(d_H(H_n, H_n^i) < \epsilon \) for every \(i \geq I_\epsilon^n \).

Since \(H_n \) is compact there exists a cover \(\{ B(x_j, \epsilon) \}_{j=1}^{p_n} \) of \(H_n \) of \(\epsilon \)-balls such that \(x_j \in H_n \). Since \(H_n = \bigcup_{j=1}^{p_n} H_n^j \), there exists an \(i_j \) where \(d(x_j, H_n^j) < \epsilon/2 \) for each \(j \in \{1, ..., p_n\} \). Let \(I_{\max} = \max\{i_j \mid j \in \{1, ..., p_n\} \} \). By uniform continuity, there exists a \(\delta > 0 \) such that if \(d(x, y) < \delta \) then \(d(f_n^k(x), f_n^k(y)) < \epsilon/2 \) for every \(k \in \{n, ..., I_{\max} \} \). Let \(I_{\delta} \) be such that \(\epsilon_i < \delta \) for every \(i \geq I_{\delta} \) and \(I_\epsilon^n = \max\{I_{\max}, I_{\delta}\} \). Since

\[d_S(f_n^i(A_i^H), I(A_i^H, B_i^H)) < \epsilon_i < \delta \]
for each $i \geq I^n_\epsilon$ and $j \in \{1, \ldots, p_n\}$ it follows that

$$d_S(H_n^i, H_n^j) \leq d_S(f_n^i(A_n^i), f_n^j(I(A_i, B_i))) < \epsilon/2$$

for each $i \geq I^n_\epsilon$ and $j \in \{1, \ldots, p_n\}$. Hence $H_n^i \cap B(x_j, \epsilon) \neq \emptyset$ for each $i \geq I^n_\epsilon$ and $j \in \{1, \ldots, p_n\}$. Thus, since $H_n^i \subset H_n$, it follows that $d_H(H_n, H_n^i) < \epsilon$ for every $i \geq I^n_\epsilon$.

Let $H = \liminf \{f_i, H_i\}_{i=1}^\infty$.

Claim 2: H is indecomposable.

Given n and ϵ, let $i = I^n_{\epsilon/2} + 1$ as in Claim 1. Since f_n^i is uniformly continuous, there exists $\delta > 0$ such that if $d(x, y) < \delta$ then $d(f_n^i(x), f_n^i(y)) < \epsilon/2$. Let I_δ be such that if $p \geq I_\delta$ then $\epsilon_p < \delta$. Let $j = \max\{I^n_{\epsilon/2} + 1, I_\delta\}$ and E_j, F_j be a decomposition of H_j. Then it follows from hypothesis 2 and Proposition 23 that one of the following must be true: $A_j^H \subset E_j$, $A_j^H \subset F_j$, $B_j^H \subset E_j$, or $B_j^H \subset F_j$. Without loss of generality assume $A_j^H \subset E_j$. Thus it follows from hypothesis 5 that $d_S(f_n^i(E_j), I(A_j^H, B_j^H)) < \delta$. Hence,

$$d_S(f_n^i(E_j), H_n^j) = d_S(f_n^i(E_j), f_n^j(I(A_j^H, B_j^H))) < \epsilon/2.$$

Since $f_n^i(E_j) \subset H_n$ and $d_H(H_n, H_n^j) < \epsilon/2$ it follows that

$$d_H(f_n^i(E_j), H_n) < \epsilon/2 + \epsilon/2.$$

Therefore it follows from Theorem 22 that H is indecomposable.

Next let $K_n^i = f_n^i(I(A_i^K, B_i^K))$, $K_n = \bigcup_{i=n+1}^\infty K_n^i$ and $K = \lim f_i$. Then by a similar argument as for H, we may conclude that K is indecomposable.

Claim 3: $X = H \cup K$.

Pick $x_n \in G_n$. Notice that by hypothesis 4) for every $\epsilon > 0$ there exists $I^n_\epsilon > 0$ such that if $i \geq I^n_\epsilon$ then $d_H(f_n^i(A_i), G_n) < \epsilon$. Thus, it follows that $d_H(H_n^i \cup K_n^i, x_n) < \epsilon$. Hence x_n is a limit point of $H_n \cup K_n$. Since $H_n \cup K_n$ is compact it follows that $x_n \in H_n \cup K_n$ and thus $G_n = H_n \cup K_n$. Therefore, $X = H \cup K$. □

Lemma 25 Let $X = \liminf \{G_i, f_i\}_{i=1}^\infty$ where each (G_i, V_i) is a graph continuum. Suppose $\{\epsilon_i\}_{i=1}^\infty$ is a sequence of positive numbers that converges to 0 and
for each i there exists an edge E_i of (G_i, V_i) that contains 3 disjoint arcs A^i_1, A^i_2, A^i_3 such that $d_H(f^i_n(A^i_j), G_n) < \epsilon_i$ for each $j \in \{1, 2, 3\}$. Then X is indecomposable.

PROOF. From Theorem 3 it follows that if H_i, K_i is a decomposition of G_i, then $A^i_j \subset H_i$ or $A^i_j \subset K_i$ for some $j \in \{1, 2, 3\}$. Thus $d_H(f^i_n(H_i), G_n) < \epsilon_i$ or $d_H(f^i_n(K_i), G_n) < \epsilon_i$. Hence, X is indecomposable by Theorem 22. \qed

4 Main Results

In this section, we prove the main results of the paper. Let $B(y, \epsilon)$ be the open ϵ-ball centered at y.

Proposition 26 Suppose that $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are maps. Let U be a subset of Z, V be a component of $g^{-1}(U)$ and C be component of $f^{-1}(V)$. Then C is a component of $(g \circ f)^{-1}(U)$.

PROOF. Clearly $C \subset (g \circ f)^{-1}(U)$, so suppose that C' is a component of $(g \circ f)^{-1}(U)$ such that C is a proper subset of C'. If $f(C') \subset V$ then C is properly contained in a connected subset of $f^{-1}(V)$ and it follows that C is not a component of $f^{-1}(V)$. Hence, $f(C') \not\subset V$. However, $V \cap f(C') \neq \emptyset$. Since f is continuous, $f(C')$ and thus $f(C') \cup V$ are connected. But $g(f(C') \cup V) \subset U$. Therefore, $f(C') \cup V$ is a connected subset of $g^{-1}(U)$ that properly contains V. However, this contradicts the fact that V is a component of $g^{-1}(U)$. Thus, C is not a proper subset of C'. Hence C must be a component of $(g \circ f)^{-1}(U)$. \qed

Let G be a graph continuum and $x \in G$. $(U, V)_x$ is a double separator for x if U, V are connected open sets that contain x such that $V \subset U$ and $\text{Bd}(U) \neq \emptyset$. A map $f : X \rightarrow Y$ is ϵ-onto if $\sup_{y \in Y}\{d(y, f(X))\} < \epsilon$.

Lemma 27 Let G be a graph continuum and $(U, V)_y$ be a double separator for some $y \in G$. Then there exists a $\delta > 0$ such that if $f_\epsilon : X \rightarrow G$ is any ϵ-onto map of a continuum X into G with $\epsilon < \delta$, then there exists a component C of $f_\epsilon^{-1}(U)$ such that $f_\epsilon(C) \cap \text{Bd}(U) \neq \emptyset$ and $f_\epsilon(C) \cap V \neq \emptyset$.

PROOF. First, since V is open, there exists a $\delta > 0$ such that $B(y, \delta) \subset V$. Suppose that $\epsilon < \delta$ and no component of $f_\epsilon^{-1}(U)$ intersects $B(y, \delta)$. Then $d(y, f_\epsilon(X)) \geq \delta > \epsilon$ which contradicts the fact that f_ϵ is ϵ-onto.
Next, let C be any component of $f_\varepsilon^{-1}(U)$. Then, $\text{Bd}(f_\varepsilon^{-1}(U)) \cap C \neq \emptyset$ by the Boundary Bumping Theorem. However, if $f_\varepsilon(C) \cap \text{Bd}(U) = \emptyset$ then subcontinuum C is a proper subset of open set $f_\varepsilon^{-1}(U)$ which is a contradiction. □

Proposition 28 Let U be a connected open set of a continuum X such that $\text{Bd}(U) \neq \emptyset$ and V be a open set such that $V \subset U$. Suppose that Y is a subcontinuum of X such that $Y \cap \text{Bd}(U) \neq \emptyset$ and $Y \cap V \neq \emptyset$. Then $Y \cap \text{Bd}(V) \neq \emptyset$.

PROOF. Suppose on the contrary that $Y \cap \text{Bd}(V) = \emptyset$. Then $Y \cap V \cap \text{Bd}(V) = \emptyset$. Thus $Y \cap V \subset V$. It follows that $Y \cap V$ and $Y - V$ are disjoint nonempty closed sets whose union is V. Hence Y is not connected. This contradicts the fact that Y is a continuum. □

Define $\mathcal{W}_n = \{(S_i)_{i=1}^n | S_i \in \{A, B\}\}$. If $W_n = \langle S_1, ..., S_n \rangle \in \mathcal{W}_n$, then define $\langle W_n, A \rangle = \langle S_1, ..., S_n, A \rangle$ and $\langle W_n, B \rangle = \langle S_1, ..., S_n, B \rangle$. Notice that $(W_n, A), (W_n, B) \in \mathcal{W}_{n+1}$. Finally, let $\mathcal{W} = \{(S_i)_{i=1}^\infty | S_i \in \{A, B\}\}$ and if $W = \langle S_i \rangle_{i=1}^\infty \in \mathcal{W}$ then let $\Pi_n(W) = \langle S_i \rangle_{i=1}^n$.

Lemma 29 $X = \lim\{G_i, f_i\}_{i=1}^\infty$ where each G_i is a graph continuum and let $\varepsilon_i \to 0$. Suppose that for each i there exist disjoint subcontinua A_i, B_i of G_i such that $f_j^1|_{A_i}$ and $f_j^1|_{B_i}$ are ε_i onto G_j for every $j < i$. Then X is non-Suslinean.

PROOF. Let $x \in G_1$ and $(U, V)_x$ be a double separator for x. There exists $\delta_1 > 0$ such that $B(x, \delta_1) \subset V$. Choose i_1 such that $\varepsilon_{i_1} < \delta_1$. There exist components $U_{(A)}^{i_1}, U_{(B)}^{i_1}$ of $(f_{i_1}^1|_{A_{i_1}})^{-1}(U)$, $(f_{i_1}^1|_{B_{i_1}})^{-1}(U)$, respectively, such that $f_{i_1}^1(U_{(A)}^{i_1}) \cap V \neq \emptyset$ and $f_{i_1}^1(U_{(B)}^{i_1}) \cap V \neq \emptyset$. Furthermore, since A_{i_1} and B_{i_1} are disjoint continua, it follows that $U_{(A)}^{i_1} \cap U_{(B)}^{i_1} = \emptyset$. Let $V_{(A)}^{i_1}, V_{(B)}^{i_1}$ be components of $(f_{i_1}^1|_{A_{i_1}})^{-1}(V)$, $(f_{i_1}^1|_{B_{i_1}})^{-1}(V)$, respectively, and choose $x_{(A)}^{i_1} \in V_{(A)}^{i_1}$ and $x_{(B)}^{i_1} \in V_{(B)}^{i_1}$. Then, $(U_{(A)}^{i_1}, V_{(A)}^{i_1})_{x_{(A)}^{i_1}}$ and $(U_{(B)}^{i_1}, V_{(B)}^{i_1})_{x_{(B)}^{i_1}}$ are double separators.

Continuing inductively, suppose that i_{n-1} and $\{U_{W_{n-1}}^{n-1}\}_{W_{n-1} \in \mathcal{W}_{n-1}}$ have been found with the following properties:

1. each $U_{W_{n-1}}^{n-1}$ is a component of $(f_{i_{n-1}}^{i_{n-1}})^{-1}(U)$
2. $f_{i_{n-1}}^{i_{n-1}}(U_{W_{n-1}}^{n-1}) \cap V \neq \emptyset$
3. $\{U_{W_{n-1}}^{n-1}\}_{W_{n-1} \in \mathcal{W}_{n-1}}$ is a pairwise disjoint collection.

Let $V_{W_{n-1}}^{n-1} = U_{W_{n-1}}^{n-1} \cap (f_{i_{n-1}}^{i_{n-1}})^{-1}(V)$ and choose $x_{W_{n-1}}^{n-1} \in V_{W_{n-1}}^{n-1} \subset U_{W_{n-1}}^{n-1}$. Since \mathcal{W}_{n-1} is finite, there exists a $\delta_{n-1} > 0$ such that $B(x_{W_{n-1}}^{n-1}, \delta_{n-1}) \subset V_{W_{n-1}}^{n-1}$.
for each $W_{n-1} \in \mathcal{W}_{n-1}$. Choose $i_n > i_{n-1}$ such that $\epsilon_{i_n} < \delta_{n-1}$. There exist components $U^n_{(W_{n-1}, A)}$, $U^n_{(W_{n-1}, B)}$ of $(f^n_{i_{n-1}}|A_{n,i})^{-1}(U^n_{W_{n-1}})$, $(f^n_{i_{n-1}}|B_{n,i})^{-1}(U^n_{W_{n-1}})$, respectively, such that $f^n_{i_{n-1}}(U^n_{(W_{n-1}, A)}) \cap V^n_{W_{n-1}} \neq \emptyset$ and $f^n_{i_{n-1}}(U^n_{(W_{n-1}, B)}) \cap V^n_{W_{n-1}} \neq \emptyset$. It follows from Proposition 26 that $U^n_{(W_{n-1}, A)}$ and $U^n_{(W_{n-1}, B)}$ are components of $f^n(U)$ and from Lemma 27 that $f^n_{i_{1}}(U^n_{(W_{n-1}, A)}) \cap V \neq \emptyset$ and $f^n_{i_{1}}(U^n_{(W_{n-1}, B)}) \cap V \neq \emptyset$. Finally, since $A_{n,i}$ and $B_{n,i}$ are disjoint subcontinua and since $\{U^n_{W_{n-1}}\}_{W \in \mathcal{W}_{n-1}}$ is a collection of pairwise disjoint subcontinua, it follows that $\{U^n_{W_{n-1}}\}_{W \in \mathcal{W}_{n}}$ is a collection of pairwise disjoint subcontinua. So the induction continues.

For each $W \in \mathcal{W}$ define $H^j_W = \bigcap_{n=j}^{\infty} f^n_{i_{j}}(U^n_{\Pi_n(W)})$. Since $\bigcap_{n=j}^{\infty} f^n_{i_{j}}(U^n_{\Pi_n(W)})$ is a nested intersection of continua, H^j_W is a continuum. Thus, $H_W = \lim_{j \to \infty} H^j_W = \lim_{j \to \infty} (H^j_W \cap \text{Bd}(\mathcal{U}))$ is a subcontinuum of X. Since $f^n_{i_{1}}(U^n_{\Pi_n(W)}) \cap \text{Bd}(\mathcal{U}) \neq \emptyset$ and $f^n_{i_{1}}(U^n_{\Pi_n(W)}) \cap V \neq \emptyset$, we may conclude that $f^n_{i_{1}}(H^j_W) \cap \text{Bd}(\mathcal{U}) \neq \emptyset$ and that $f^n_{i_{1}}(H^j_W) \cap \text{Bd}(V) \neq \emptyset$ by Proposition 28. Thus each H^j_W is non-degenerate and therefore H_W is non-degenerate. Let $W' \in \mathcal{W}$ such that $W' \neq W$. Then there exists an n such that $\Pi_n(W) \neq \Pi_n(W')$. Thus $U^n_{\Pi_n(W)}$ and $U^n_{\Pi_n(W')}$ are disjoint. Therefore, H_W and $H_{W'}$ are disjoint. Finally, since \mathcal{W} is uncountable, we may conclude that $\{H_W\}_{W \in \mathcal{W}}$ is an uncountable collection of pairwise disjoint non-degenerate continua. Hence, X is non-Suslinean. □

Theorem 30 Suppose that $\{Y_n\}_{n=1}^{\infty}$ is a collection of disjoint subcontinua of continuum X such that $\lim_{n \to \infty} d_H(Y_n, X) = 0$. Then X is non-Suslinean.

PROOF. Let $X = \lim_{i \to \infty} \{X_i\}$, $f^n_{i_{j}}$ where each X_i is a graph continuum. Then

$$d_H(Y_n, X) = \sum_{i=1}^{\infty} \frac{d_H(\pi_i(Y_n), X_i)}{2^{i-1}}.$$

Let $\{\epsilon_i\}_{i=1}^{\infty}$ be a collection of positive numbers that converges to 0.

There exist $N_1 > 0$ such that $d_H(Y_n, X) < \epsilon_1/2$ for all $n \geq N_1$. Hence, $d_H(\pi_1(Y_n), X_i) < \epsilon_1$ for all $n \geq N_1$. Let Y^A_1, Y^B_1 be distinct elements of $\{Y_n\}_{n \geq N_1}$. Since $Y^A_1 \cap Y^B_1 = \emptyset$, there exists an integer k_1 such that $\pi_{k_1}(Y^A_1) \cap \pi_{k_1}(Y^B_1) = \emptyset$. Let $A_1 = \pi_{k_1}(Y^A_1)$ and $B_1 = \pi_{k_1}(Y^B_1)$.

Continuing inductively, suppose that k_1, \ldots, k_{i-1} have been found. There exists an integer N_i such that $d_H(Y_n, X) < \epsilon_i/2^{k_{i-1}}$ for all $n \geq N_i$. Hence, $d_H(\pi_j(Y_n), X_j) < \epsilon_i$ for all $n \geq N_i$ and $j \leq k_{i-1}$. Let Y^A_i, Y^B_i be distinct elements of $\{Y_n\}_{n \geq N_i}$. Again, since $Y^A_i \cap Y^B_i = \emptyset$, there exists an integer k_i such that $\pi_{k_i}(Y^A_i) \cap \pi_{k_i}(Y^B_i) = \emptyset$. Let $A_i = \pi_{k_i}(Y^A_i)$ and $B_i = \pi_{k_i}(Y^B_i)$.

18
Now define \(g_i = f_{k_{i-1}}^{k_i} \) and \(G_i = X_{k_i} \), where \(k_0 = 1 \). Then \(X \) is homeomorphic to \(\lim_{i \to \infty} \{ G_i, g_i \} \). Additionally, for each \(i \) there exist disjoint subcontinua \(A_i, B_i \) of \(G_i \) such that \(g_i^j|_{A_i} \) and \(g_i^j|_{B_i} \) are \(\epsilon_i \) onto \(G_j \) for every \(j < i \) since \(g_j^i(A_i) = \pi_{k_i}(Y_i^A) \) and \(g_j^i(B_i) = \pi_{k_i}(Y_i^B) \). Thus by Lemma 29, \(X \) is non-Suslinean. \(\square \)

Theorem 31. Suppose that \(\{ Y_i \}_{i=1}^{\infty} \) is a collection of disjoint subcontinua of continuum \(X \) such that \(\lim_{i \to \infty} d_H(Y_i, X) = 0 \) where each \(Y_i \) is chainable and \(X \) is finitely cyclic. Then \(X \) is indecomposable or the union of 2 indecomposable subcontinua.

PROOF. Suppose that \(X = \lim_{i \to \infty} \{ G_i, f_i \} \) where each \((G_i, Y_i) \) is a graph continuum with vertices \(V_i \) and with at most \(k \) distinct simple closed curves. Let \(p = 32k^2 + 4k + 7 \) and let \(\{ \epsilon_i \}_{i=1}^{\infty} \) be a sequence of positive numbers that converges to 0. By Theorem 21, there exist \(k_1 > 0 \) and \(p \) disjoint arcs \(\{ A_j^p \}_{j=1}^{p} \) of \(G_{k_1} \) such that \(d_H(f_{k_1}^n(A_j), G_n) < \epsilon_i \) for each \(j \in \{ 1, ..., p \} \) and \(n < k_1 \).

Continuing inductively, suppose that \(k_1, ..., k_{i-1} \) have been found. Then by Theorem 21, there exist \(k_i > k_{i-1} \) and \(p \) disjoint arcs \(\{ A_j^p \}_{j=1}^{p} \) of \(G_{k_i} \) such that \(d_H(f_{k_i}^n(A_j), G_n) < \epsilon_i \) for each \(j \in \{ 1, ..., p \} \) and \(n < k_i \). Thus it follows from Theorems 2, 3 and Lemma 24 that \(X \) is indecomposable or the union of 2 indecomposable subcontinua. \(\square \)

Theorem 32. Suppose that \(\{ Y_i \}_{i=1}^{\infty} \) is a collection of disjoint subcontinua of continuum \(X \) such that \(\lim_{i \to \infty} d_H(Y_i, X) = 0 \) where \(X \) is \(G \)-like. Then \(X \) is indecomposable.

PROOF. Suppose that \(X = \lim_{i \to \infty} \{ G_i, f_i \} \) where \((G, V) \) is a graph continuum. Let \(p = 2|E(V)| + |V| + 1 \) and let \(\{ \epsilon_i \}_{i=1}^{\infty} \) be a sequence of positive numbers that converges to 0. By Theorem 21, there exist \(k_1 > 0 \) and a subset \(\{ Y_j^1 \}_{j=1}^{p} \) of \(\{ Y_i \}_{i=1}^{\infty} \) such that \(\{ \pi_{k_i}(Y_j^1) \}_{j=1}^{p} \) is a collection of pairwise disjoint subcontinua of \(G_{k_1} \) such that \(d_H(f_{k_1}^n(\pi_{k_i}(Y_j^1)), G_n) < \epsilon_i \) for each \(j \in \{ 1, ..., p \} \) and \(n < k_1 \). Furthermore, it follows from the pigeon-hole principle that there exist at least three elements of \(\{ \pi_{k_i}(Y_j^1) \}_{j=1}^{p} \) that are contained in the same edge \(E_{k_1} \) (and are hence arcs).

Continuing inductively, suppose that \(k_1, ..., k_{i-1} \) have been found. Then by Theorem 21, there exist \(k_i > k_{i-1} \) and a subset \(\{ Y_j^i \}_{j=1}^{p} \) of \(\{ Y_i \}_{i=1}^{\infty} \) such that \(\{ \pi_{k_i}(Y_j^i) \}_{j=1}^{p} \) is a collection of pairwise disjoint subcontinua of \(G_{k_i} \) such that \(d_H(f_{k_i}^n(\pi_{k_i}(Y_j^i)), G_n) < \epsilon_i \) for each \(j \in \{ 1, ..., p \} \) and \(n < k_i \). Furthermore, it again follows from the pigeon-hole principle that there exist at least three elements of \(\{ \pi_{k_i}(Y_j^i) \}_{j=1}^{p} \) that are contained in the same edge \(E_{k_i} \) (and are hence arcs). Thus \(X \) is indecomposable by Lemma 25. \(\square \)
Theorem 33 Suppose X is k-cyclic. If there exists a continuous, one-to-one into function $g : [0, \infty) \to X$ such that for every $x \in [0, \infty)$, $g([x, \infty)) = X$, then X is indecomposable.

PROOF. Suppose that $X = \lim\{G_i, f_i\}_{i=1}^{\infty}$ where each (G_i, \mathcal{V}_i) is a graph continuum with at most k distinct simple closed curves and let $p = 32k^2 + 4k + 7$. Let $\{\epsilon_i\}_{i=1}^{\infty}$ be a sequence of positive numbers that converges to 0. There exists $0 < x_1^i < y_1^i < x_2^i < y_2^i$ such that $d_H(g([x_j^i, y_j^i]), X) < \epsilon_i$ for each $j \in \{1, 2\}$.

Continuing inductively, suppose that y_2^{i-1} has been found, then there exist $y_2^{i-1} < x_1^i < y_1^i < x_2^i < y_2^i$ such that $d_H(g([x_j^i, y_j^i]), X) < \epsilon_i$ for each $j \in \{1, 2\}$.

Next by Theorem 21, there exist $k_1 > 0$ and a subset $\{q(1, \alpha)\}_{\alpha=1}^{p}$ of positive integers such that

$$\{\pi_{k_1}(g([x_1^{q(1,\alpha)}, y_1^{q(1,\alpha)}]), \pi_{k_1}(g([x_2^{q(1,\alpha)}, y_2^{q(1,\alpha)}]))}_{\alpha=1}^{p}$$

is a collection of pairwise disjoint arcs of G_k, with the following properties:

1. $\pi_{k_1}(g([x_j^{q(1,\alpha)}, y_j^{q(1,\alpha)}])) \subset \pi_{k_1}(g([x_1^{q(1,\alpha)}, y_2^{q(1,\alpha)}]))$ for each $j \in \{1, 2\}$
2. $d_H(f_{k_1}^n(\pi_{k_1}(g([x_j^{q(1,\alpha)}, y_j^{q(1,\alpha)}]), G_n) < \epsilon_i$ for each $j \in \{1, \ldots, p\}$ and $n < k_1$.

Continuing inductively, suppose that k_1, \ldots, k_{i-1} have been found. Then again by Theorem 21, there exist $k_i > k_{i-1}$ and a subset $\{q(i, \alpha)\}_{\alpha=1}^{p}$ of positive integers such that

$$\{\pi_{k_i}(g([x_1^{q(i,\alpha)}, y_1^{q(i,\alpha)}]), \pi_{k_i}(g([x_2^{q(i,\alpha)}, y_2^{q(i,\alpha)}]))\}_{\alpha=1}^{p}$$

is a collection of pairwise disjoint arcs of G_k, with the following properties:

1. $\pi_{k_i}(g([x_j^{q(i,\alpha)}, y_j^{q(i,\alpha)}])) \subset \pi_{k_i}(g([x_1^{q(i,\alpha)}, y_2^{q(i,\alpha)}]))$ for each $j \in \{1, 2\}$
2. $d_H(f_{k_i}^n(\pi_{k_i}(g([x_j^{q(i,\alpha)}, y_j^{q(i,\alpha)}]), G_n) < \epsilon_i$ for each $j \in \{1, \ldots, p\}$ and $n < k_i$.

Let H_k, K_k be a decomposition of G_k. Then by Theorem 2, there exist $\alpha \in \{1, \ldots, p\}$ such that one of the following must be true:

1. $\pi_{k_i}(g([x_1^{q(i,\alpha)}, y_1^{q(i,\alpha)}])) \subset H_{k_i}$
2. $\pi_{k_i}(g([x_1^{q(i,\alpha)}, y_2^{q(i,\alpha)}])) \subset K_{k_i}$
3. $\pi_{k_i}(g([x_1^{q(i,\alpha)}, m_i])) \subset H_{k_i}$ and $\pi_{k_i}(g([m_i, y_2^{q(i,\alpha)}])) \subset K_{k_i}$ for some $m_i \in [x_1^{q(i,\alpha)}, y_2^{q(i,\alpha)}]$
4. $\pi_{k_i}(g([x_1^{q(i,\alpha)}, m_i])) \subset K_{k_i}$ and $\pi_{k_i}(g([m_i, y_2^{q(i,\alpha)}])) \subset H_{k_i}$ for some $m_i \in [x_1^{q(i,\alpha)}, y_2^{q(i,\alpha)}]$.

20
Notice that 3) implies that
\[\pi_k(g([x_1^{q(i,\alpha)}, y_1^{q(i,\alpha)}])) \subset H_{k_i} \text{ or } \pi_k(g([x_2^{q(i,\alpha)}, y_2^{q(i,\alpha)}])) \subset K_{k_i} \]
and 4) implies that
\[\pi_k(g([x_1^{q(i,\alpha)}, y_1^{q(i,\alpha)}])) \subset K_{k_i} \text{ or } \pi_k(g([x_2^{q(i,\alpha)}, y_2^{q(i,\alpha)}])) \subset H_{k_i}. \]
Thus for any decomposition \(H_{k_i}, K_{k_i} \) of \(G_{k_i} \) we have that \(d_{H_k}(f_{k_i}(H_{k_i}), G_n) < \epsilon_i \)
for each \(n < k_i \) or \(d_{H_k}(f_{k_i}(K_{k_i}), G_n) < \epsilon_i \). Hence, it follows from Theorem 22 that \(X \) is indecomposable. \(\square \)

Now Theorems 2-33 together give the main result Theorem 1.

5 Sharpness of results

In this section, we give examples that show that Theorem 1 is sharp.

Example 1. The following example is due to Bellamy and Krasinkiewicz [2]: Let \(K \) be the buckethandle continuum and \(A \) be the segment with end points \((1/2, 0)\) and \((1/2, 1)\). \(A \cap K \) is a Cantor middle thirds set. Identify each complementary open interval of this Cantor set with its end points to get continuum \(B \). \(B \) has the following properties:

1. \(B \) is closure of the one-to-one image of a ray.
2. \(B \) has a collection of disjoint arcs \(\{I_i\}_{i=1}^{\infty} \) such that \(\lim_{i \to \infty} d_H(I_i, B) = 0 \).
3. \(B \) is hereditarily decomposable.
4. \(B \) is not \(k \)-cyclic.

Thus Theorem 1 part 4) is sharp.

Example 2. Let \(X_n \subset \prod_{i=1}^{n} [0, 1] \) be defined by the following:

1. \(X_1 = [0, 1] \)
2. \(X_n = X_{n-1} \times \{0, 1/2^n\} \cup I_n \) where \(I_n = (1/2, 1/4, ..., 1/2^n) \times [0, 1/2^n] \).

Next define \(f_n : X_{n+1} \rightarrow X_n \) in the following way:
Define $H = \lim_{n \to \infty} \{X_n, f_n\}$. Then H has the following properties:

1. H has a collection of disjoint subcontinua $\{Y_i\}_{i=1}^{\infty}$ such that $\lim_{i \to \infty} d_H(Y_i, H) = 0$.
2. H is hereditarily decomposable.
3. H is k-cyclic. In fact, H is tree-like.
4. H is not G-like.

Thus Theorem 1 parts 1) and 3) are sharp.

Example 3. Let $Y_n \subset [0, 1] \times [0, 1]$ be defined by the following:

1. $Y_1 = (\{1/2\} \times [0, 1]) \cup ([0, 1/2] \times \{1/2\})$
2. $Y_n = X_{n-1} \cup (\{2^{n-1}/2^n\} \times [0, 1]) \cup ([2^{n-1}/2^n, 2^n-1/2^n] \times \{1/2\})$.

Then let

$T_n = \{(x, y) \in Y_n | y \geq 1/2\}$

and

$B_n = \{(x, y) \in Y_n | y \leq 1/2\}$.

Next define $f_n : Y_{n+1} \to Y_n$ such that

$$f_n(x, y) = \begin{cases} (x, y) & \text{if } (x, y) \in Y_n \\ \left(\frac{2^n-1}{2^n}, 1/2\right) & \text{if } (x, y) \in [\frac{2^n-1}{2^n}, \frac{2^n-1}{2^n+1}] \times \{1/2\} \end{cases}$$
and such that \(f_n(\left\{ \frac{2^{n-1}-1}{2^n+1} \right\} \times [0, \frac{1}{2}]) = B_n \) and \(f_n(\left\{ \frac{2^{n-1}-1}{2^n+1} \right\} \times [\frac{1}{2}, 1]) = T_n \).

Then define \(Q = \lim\{Y_n, f_n\}_{n=1}^{\infty}, T = \lim\{T_n, f_n\}_{n=1}^{\infty} \) and \(B = \lim\{B_n, f_n\}_{n=1}^{\infty} \). Then \(Q \) has the following properties:

1. \(Q \) has a collection of disjoint arc-like subcontinua \(\{A_i\}_{i=1}^{\infty} \) such that \(\lim_{i \to \infty} d_H(A_i, Q) = 0 \)
2. \(Q = T \cup B \) where \(T \) and \(B \) are both indecomposable.
3. \(Q \) is \(k \)-cyclic. In fact, \(Q \) is tree-like.
4. \(Q \) is not \(G \)-like.

Thus Theorem 1 part 2) is sharp.

\[\begin{array}{c}
\text{Fig. 2. Continuum } Q. \\
\end{array} \]

6 Appendix: A Generalization of the Anderson-Choquet Theorem

Let \(G \) be a topological graph and \(\mathcal{V} \) be a set of vertices of \(G \). Then define

\[B_1(G, \mathcal{V}) = B \cup \{x_E | x \text{ is the midpoint of edge } E \text{ of } G - \mathcal{V}\}. \]

Continuing inductively, define

\[B_n(G, \mathcal{V}) = B_1(G, B_{n-1}(G, \mathcal{V})). \]

\(B_n(G, \mathcal{V}) \) is called the \(n \)th barycentric subdivision of \((G, \mathcal{V}) \). Let \(X \) be a 1-dimensional continuum, then \(\mathcal{U} \) is a proper finite open cover of \(X \) if for every
Proposition 34 If V is a collection of vertices for G, then $\bigcup_{n=1}^{\infty} B_n(G, V)$ is dense in G.

PROOF. The proposition follows from the fact that the dyadic rationals are dense in \mathbb{R}. □

We say that $(\mathcal{U}, \mathcal{W})$ has Property P if \mathcal{U} and \mathcal{W} are proper finite open covers of X such that

1. \mathcal{W} refines \mathcal{U}
2. If $W \in \mathcal{W}$ and $U \in \mathcal{U}$ such that $W \cap \text{core}(U) \neq \emptyset$, then there exists a chain $[W_1, ..., W_3]$ in \mathcal{W} such that $W_i \subset \text{core}(U)$ for each $i \in \{2, 3, 4\}$ and $W \in \{W_1, ..., W_5\}$
3. If $U_1, U_2 \in \mathcal{U}$ such that $U_1 \cap U_2 \neq \emptyset$ then there exists a chain $[W_1, ..., W_n]$ of \mathcal{W} such that $W_1 \subset \text{core}(U_1)$, $W_n \subset \text{core}(U_2)$ and $W_i \subset U_1 \cup U_2$ for each $i \in \{1, \ldots, n\}$.
4. If U_1, U_2, U_3 are distinct elements of \mathcal{U} such that $U_1 \cap U_2 \neq \emptyset$ and $U_2 \cap U_3 \neq \emptyset$, then every chain of \mathcal{W} that intersects both $U_1 \cap U_2$ and $U_2 \cap U_3$ must have at least 5 links.

Proposition 35 If $(\mathcal{U}_a, \mathcal{U}_3)$ and $(\mathcal{U}_3, \mathcal{U}_a)$ satisfies part 1 and 4 of Property P, then $(\mathcal{U}_a, \mathcal{U}_3)$ satisfies part 1 and 4 of Property P.

PROOF. The fact that $(\mathcal{U}_a, \mathcal{U}_3)$ satisfies part 1 is obvious. Suppose that there exists U_1^a, U_2^a, and U_3^a in \mathcal{U}_a and a chain $[U_1^a, \ldots, U_4^a]$ in \mathcal{U}_a that intersects both $U_3^a \cap U_2^a$ and $U_2^a \cap U_3^a$. Since \mathcal{U}_a refines \mathcal{U}_3, for each $i \in \{1, \ldots, 4\}$, there exists $U_i^3 \in \mathcal{U}_3$ such that $U_i^3 \subset U_i^a$. However, then $\{U_i^3\}_{i=1}^{4}$ must contain a chain that intersects both $U_1^a \cap U_2^a$ and $U_3^a \cap U_2^a$ which contradicts the fact that $(\mathcal{U}_a, \mathcal{U}_3)$ satisfies part 4 of Property P. □

Proposition 36 Suppose that $(\mathcal{U}_a, \mathcal{U}_3)$ satisfies part 4 of Property P. If $U_a, U'_a \in \mathcal{U}_a$ and $U_3, U'_3 \in \mathcal{U}_a$ are such that $U_3 \cap U'_3 \neq \emptyset$ and $(U_3 \cup U'_3) \cap (U_a \cap U'_a) \neq \emptyset$ then

$$U_3 \cup U'_3 \subset \text{core}(U_a) \cup (U_a \cap U'_a) \cup \text{core}(U'_a).$$

PROOF. This follows directly from part 4 of Property P. □
Next define the nerve of a proper finite taut cover \mathcal{U}, denoted by $N(\mathcal{U})$, in the following way: For each $U_i \in \mathcal{U}$ pick $u_i \in \text{core}(U_i)$. If $U_i \cap U_j \neq \emptyset$, define the edge from u_i to u_j induced by U_i, U_j to be the straight line segment $[u_i, u_j]$. Then define

$$N(\mathcal{U}) = \bigcup_{U_i \cap U_j \neq \emptyset} [u_i, u_j].$$

Notice that the nerves of finite taut covers of 1-dimensional covers are graph continua. The set $\{u_i | U_i \in \mathcal{U}\}$ is called the vertices induced from $N(\mathcal{U})$.

Next, if $(\mathcal{U}, \mathcal{W})$ have property P, construct the vertex map f of $N(\mathcal{W})$ into $N(\mathcal{U})$ in the following way:

1. If $W_i \cap \text{core}(U_j) \neq \emptyset$, then have $f(w_i) = u_j$.
2. If $W_i \subset U_j \cap U_{j'}$, $W_i \cap W_{j'} \neq \emptyset$ and $W_i \cap \text{core}(U_j) \neq \emptyset$ (or $W_{j'} \cap \text{core}(U_j) \neq \emptyset$), then have $f(w_i) = 3/4u_j + 1/4u_{j'}$ (or $f(w_{j'}) = 3/4u_{j'} + 1/4u_j$).
3. If $W_i \cup W_{j'} \subset U_j \cap U_{j'}$, for every $W_{j'} \in \mathcal{W}$ such that $W_i \cap W_{j'} \neq \emptyset$, then have $f(w_i) = 1/2u_{j'} + 1/2u_j$.

Notice that f maps adjacent vertices of $N(\mathcal{W})$ to either the same or to adjacent endpoints of quarter subdivisions of an edge of $N(\mathcal{U})$, i.e., the same or adjacent vertices of the second barycentric subdivision of $N(\mathcal{U})$. Extend f linearly onto the edges of $N(\mathcal{W})$ producing a simplicial map $N(\mathcal{W})$ onto the second barycentric subdivision of $N(\mathcal{U})$. We call f the vertex map of $N(\mathcal{W})$ into $N(\mathcal{U})$.

Lemma 37 If $(\mathcal{U}, \mathcal{W})$ has property P, then the corresponding vertex map is onto.

Proof. Let U_1 and U_2 be distinct elements of \mathcal{U} that intersect and $[u_1, u_2]$ be the corresponding nerve of $\{U_1, U_2\}$. From part 3 of Property P, we know there exists a chain $[W_1, ..., W_n]$ of \mathcal{W} such that $W_1 \cap \text{core}(U_1) \neq \emptyset$ and $W_n \cap \text{core}(U_2) \neq \emptyset$. Thus it follows from part 2 of Property P that there exists a subchain $[W_i, ..., W_j]$ of $[W_1, ..., W_n]$ such that $W_i \subset \text{core}(U_1)$, $W_j \subset \text{core}(U_2)$ and $W_k \subset (U_1 \cap U_2) \cup \text{core}(U_2)$ for each $k \in \{i, ..., j\}$. Then by the construction of the nerve map f, the nerve of $[W_i, ..., W_j]$ is an arc $[w_i, w_j]$ that must be mapped onto $[u_1, u_2]$ where $f(w_i) = u_1$ and $f(w_j) = u_2$. Since every edge of \mathcal{U} is mapped onto by f, it follows that the nerve of \mathcal{U} is mapped onto by f. □

The following 5 results all have the following hypothesis (known as Hypothesis H):

25
Suppose that \(\{ \mathcal{U}_i \}_{i=1}^{\infty} \) is a collection of open covers of continuum \(X \) such that \((\mathcal{U}_i, \mathcal{U}_{i+1}) \) has Property \(P \) for each \(i \), \(\mathcal{V}_i \) is the induced set of vertices for the nerve \(N(\mathcal{U}_i) \) and \(f_i : N(\mathcal{U}_{i+1}) \rightarrow N(\mathcal{U}_i) \) is the respective vertex map.

Proposition 38 Suppose Hypothesis \(H \). Then \(f_k^n(\mathcal{V}_n) = B_{2n-2k}(N(\mathcal{U}_k), \mathcal{V}_k) \).

PROOF. This follows directly from the inductive definition of \(B_n(G, \mathcal{V}) \) and the definition of vertex map. \(\square \)

For the following results, if \(U, U' \in \mathcal{U}_i \), let \([v_U, v_{U'}]_i \) be the edge induced from \(U, U' \) in the nerve \(N(\mathcal{U}_i) \).

Proposition 39 Suppose Hypothesis \(H \). Suppose that distinct \(U_{j+k}, U'_{j+k} \in \mathcal{U}_{j+k} \) and distinct \(U_j, U'_j \in \mathcal{U}_j \) have the following properties:

1. \(U_{j+k} \cap U'_{j+k} \neq \emptyset \)
2. \(U_j \cap U'_{j} \neq \emptyset \)
3. \(U_{j+k} \cup U'_{j+k} \subset \operatorname{core}(U_j) \cup (U_j \cap U'_j) \cup \operatorname{core}(U'_j) \)
4. \((U_{j+k} \cup U'_{j+k}) \cap (U_j \cap U'_j) \neq \emptyset \).

Then \(f_j^{j+k}([v_{U_{j+k}}, v_{U'_{j+k}}]_{j+k}) \subset [v_U, v_{U'}]_j \).

PROOF. Proof is by induction on \(k \).

Base Case: Suppose that the hypothesis is true for \(k = 1 \).

Then the conclusion follows directly from the definition of vertex map that \(f_j([v_{U_{j+1}}, v_{U'_{j+1}}]_{j+1}) \subset [v_U, v_{U'}]_j \).

Induction Step: Suppose that the proposition is true for \(k = n \) and the hypothesis is true for \(k = n + 1 \).

By the fact that \((\mathcal{U}_{j+n}, \mathcal{U}_{j+n+1}) \) has Property \(P \), there exist distinct and intersecting \(U_{j+n}, U'_{j+n} \in \mathcal{U}_i \) such that \(U_{j+n+1} \cup U'_{j+n+1} \subset \operatorname{core}(U_{j+n}) \cup (U_{j+n} \cap U'_{j+n}) \cup \operatorname{core}(U'_{j+n}) \). So, by the definition of vertex map \(f_{j+n}([v_{U_{j+n+1}}, v_{U'_{j+n+1}}]_{j+n+1}) \subset [v_{U_{j+n}}, v_{U'_{j+n}}]_{j+n} \).

Also, since \((U_{j+n+1} \cup U'_{j+n+1}) \cap (U_j \cap U'_j) \neq \emptyset \) and \((\mathcal{U}_{j+n}, \mathcal{U}_j) \) satisfies part 4) of Property \(P \) (by Proposition 35), it follows from Proposition 36 that

\[
U_{j+n} \cup U'_{j+n} \subset \operatorname{core}(U_j) \cup (U_j \cap U'_j) \cup \operatorname{core}(U'_j).
\]
Thus U_{j+n}, U'_{j+n} and U_j, U'_j satisfy the hypothesis of the proposition. Hence by the induction hypothesis it follows that

$$f_{j}^{j+n+1}([v_{U_{j+n}}, v_{U'_{j+n}}]; j+n+1) \subset f_{j}^{j+n}([v_{U_{j+n}}, v_{U'_{j+n}}]; j+n) \subset [v_{U_{j}}, v_{U'_{j}}].$$

\square

If $U \in \mathcal{U}$, then define $\text{adj}(U, \mathcal{U}) = \{U' \in \mathcal{U}| U \cap U' \neq \emptyset\}$.

Corollary 40 Suppose hypothesis H. If $U_{j+k} \in \mathcal{U}_{j+k}$ and $U_j \in \mathcal{U}_j$ are such that $U_j \cap U_{j+k} \neq \emptyset$ then $f_{j}^{j+k}(v_{U_{j+k}}) \in N(\text{adj}(U_j, \mathcal{U}_j))$.

PROOF. Suppose that $U_j \cap U_{j+k} \neq \emptyset$. Then by Propositions 35 and 36, there exists a $U'_{j+k} \in \mathcal{U}_{j+k}$ and $U'_j \in \mathcal{U}_j$ such that

1. $U_{j+k} \cap U'_{j+k} \neq \emptyset$
2. $U_j \cap U'_j \neq \emptyset$
3. $U_{j+k} \cup U'_{j+k} \subset \text{core}(U_j) \cup (U_j \cap U'_j) \cup \text{core}(U'_j)$
4. $(U_{j+k} \cup U'_{j+k}) \cap (U_j \cap U'_j) \neq \emptyset$.

So it follows from Proposition 39 that

$$f_{j}^{j+k}(v_{U_{j+k}}) \in [v_{U_j}, v'_{U_j}] \subset N(\text{adj}(U_j, \mathcal{U}_j)).$$

\square

If \mathcal{U} is a cover of continuum X and Y is a subset of X, then define

$$\mathcal{U}(Y) = \{U \in \mathcal{U}| U \cap Y \neq \emptyset\}.$$

Lemma 41 Suppose hypothesis H. If X' is a subcontinuum of X such that $\mathcal{U}_{j+1}(X') = \mathcal{U}_{j+1}$ then $V_j \subset f_{j}^{j}(N(\mathcal{U}_i(X')))$.

PROOF. Let $v_U \in V_j$. Then from part 2 of Property P, there exists $Q(U) \in \mathcal{U}_{j+1}$ such that

1. $Q(U) \subset \text{core}(U)$
2. if $U^j_{\alpha+1} \in \mathcal{U}_{j+1}$ such that $U^j_{\alpha+1} \cap Q(U) \neq \emptyset$, then $U^j_{\alpha+1} \subset \text{core}(U)$.

Then it follows from the construction of vertex maps that $f_{j}(N(\text{adj}(Q(U), \mathcal{U}_{j+1}))) = \{v_U\}$. Since $X' \cap Q(U) \neq \emptyset$, there exists a $U_i \in \mathcal{U}_i$ such that $U_i \cap Q(U) \neq \emptyset$. Hence, it follows from Corollary 40 that

$$f_{j+1}^{j+1}(v_{U_i}) \in N(\text{adj}(Q(U), \mathcal{U}_{j+1})).$$
Thus, $f_j^i(v_{U_i}) = v_U$ and hence $V_j \subset f_j^i(N(U_i(X')))$. \qed

Lemma 42 Under hypothesis H, for every positive integer n and $\epsilon > 0$ there exists a positive integer $i(n, \epsilon)$ such that
\[
\max\{d(f_j^i(V_i), G_j)|1 \leq j \leq n\} < \epsilon
\]
for every $i > i(n, \epsilon)$.

PROOF. By Proposition 34, for each $j \in \{1, ..., n\}$ there exists $k(j)$ such that $d(B_k(G_j), V_j) < \epsilon$ for every $k \geq k(j)$. Let $i(n, \epsilon) = \max\{k(j)|1 \leq j \leq n\} + n$. Then by Proposition 38,
\[
d(f_j^i(V_i), G_j) = d(B_{2(i-j)}(G_j), V_j, G_j) < \epsilon
\]
for each $i > i(n, \epsilon)$. \qed

Suppose that U is a cover of X. $D \subset U$ is a **connected subcollection** if for every $A, B \in D$ there exists a chain in D from A to B. D is called an **almost connected subcollection** if there exists a $C \in U$ such that $D \cup \{C\}$ is a connected subcollection. Notice that all connected subcollections are almost connected subcollections.

Proposition 43 Suppose that U is a k-cyclic cover and D is an almost connected subcollection of U. Then
\[
W = (U - D) \cup \left(\bigcup_{D \in D} D \right)
\]
is a m-cyclic cover where $m \leq k$.

PROOF. Proof is by induction on $|D|$.

Base Case: Suppose $|D| = 2$, say $D = \{A, B\}$, and D is almost connected. Then there exists $C \in U$ such that $A \cap C \neq \emptyset$ and $C \cap B \neq \emptyset$. Let $D = A \cup B$ and suppose that $[U_1, ..., U_n, D]$ is a circle-chain of W. Then at least one of the following is true:

1. $[U_1, ..., U_n, A]$ is a circle-chain of U,
2. $[U_1, ..., U_n, B]$ is a circle-chain of U,
3. $[U_1, ..., U_n, A, B]$ is a circle-chain of U,
4. $[U_1, ..., U_n, B, A]$ is a circle-chain of U,
5. $[U_1, ..., U_n, A, C, B]$ is a circle-chain of U,
6. $[U_1, ..., U_n, B, C, A]$ is a circle-chain of U.
Let $C(U_1, ..., U_n, D)$ be the collection of the above that are circle-chains. Suppose that $[V_1, ..., V_j, D]$ is a circle-chain of W distinct from $[U_1, ..., U_n, D]$. Then $C(V_1, ..., V_j, D)$ (defined in a similar way) is nonempty and disjoint from $C(U_1, ..., U_n, D)$. Thus the number of distinct circle-chains of U is greater than or equal to the number of circle-chains in W.

Induction Step: Suppose that if U is a k-cyclic cover and D_{n-1} is an almost connected subcollection of U such that $|D_{n-1}| = n - 1$, then

$$W_{n-1} = (U - D_{n-1}) \cup \bigcup_{D \in D_{n-1}} D$$

is a m_{n-1}-cyclic cover where $m_{n-1} \leq k$.

Let D_n be an almost connected subcollection of U with n elements, let D'_{n-1} be an almost connected subcollection of D_n with $n - 1$ elements and let A be the unique element of $D_n - D'_{n-1}$. Define $D = \bigcup_{B \in D_{n-1}} B$. Then by the induction hypothesis, $W'_{n-1} = (U - D'_{n-1}) \cup \{D\}$ is a m'_{n-1}-cyclic cover where $m'_{n-1} \leq k$. Furthermore, either $A \cap D \neq \emptyset$ or there exists a $C \in U$ such that $A \cap C \neq \emptyset$ and $C \cap D \neq \emptyset$ since D_n is almost connected. Thus $\{A, D\}$ is almost connected and $A \cup D = \bigcup_{B \in D_n} B$. Thus it follows from the base case that

$$W_n = (W'_{n-1} - \{A, D\}) \cup \{A \cup D\}$$

is a m_n-cyclic cover where $m_n \leq m'_{n-1} \leq k$. □

Suppose that U is an open set and W is a collection of open sets. Then define

$$A(U, W) = \{W \in W | W \subset U\}$$

and

$$CA(U, W) = \{A^* | A \text{ maximally connected subcollection of } A(U, W)\}.$$
(Otherwise, $W_0(Y)$ is a chain cover of Y and we are done.) Then let

$$W_1 = (W_0 - \{A_0, B_0\}) \cup \{A_0 \cup B_0\}.$$

Then by Proposition 43, W_1 is a m_1-cover where $m_1 \leq k$. Also notice that $|W_1| = |W_0| - 1$.

Continuing inductively, suppose that W_{n-1} and m_{n-1} have been found. Suppose that there exists distinct $U_{n-1}^a, U_{n-1}^b \in \mathcal{U}(Y)$ and distinct A_{n-1}, B_{n-1} and C_{n-1} in $W_{n-1}(Y)$ such that

1. $A_{n-1}, B_{n-1} \subset U_{n-1}^a$ and $C_{n-1} \subset U_{n-1}^b$
2. $A_{n-1} \cap B_{n-1} = \emptyset$
3. $A_{n-1} \cap C_{n-1} \neq \emptyset$ and $B_{n-1} \cap C_{n-1} \neq \emptyset$.

(Otherwise, $W_{n-1}(Y)$ is a chain cover of Y and we are done.) Then let

$$W_n = (W_{n-1} - \{A_{n-1}, B_{n-1}\}) \cup \{A_{n-1} \cup B_{n-1}\}.$$

Then by Proposition 43, W_n is a m_n-cover where $m_n \leq m_{n-1}$. Again, $|W_n| = |W_{n-1}| - 1$. So this process must eventually stop, say at p. Then W_p is a m_p-cover where $m_p \leq m_{p-1} \leq \ldots \leq m_1 \leq k$ and $W_p(Y)$ is a chain cover for Y. □

Corollary 45 Let X be a k-cyclic continuum and $\{X_i\}_{i=1}^n$ be a collection of pairwise disjoint chainable subcontinua of X. Then for every $\epsilon > 0$ there exists a proper finite m-cyclic proper taut open cover W of X where $m \leq k$ such that $\text{mesh}(W) < \epsilon$ and each $W(X_i)$ is a chain.

PROOF. The proof follows from inductive applications of Theorem 44. □

The following is the main proof of the Appendix.

Theorem 46 Suppose that X is an 1-dimensional k-cyclic continuum such that there exists disjoint subcontinua $\{X_j\}_{j=1}^\infty$ where $\lim_{j \to \infty} d_H(X, X_j) = 0$. Then there exists

1. $Y = \lim\{f_i, G_i\}_{i=1}^\infty$ where each G_i is a graph
2. positive numbers $\{\epsilon_i\}_{i=1}^\infty$ such that $\lim_{i \to \infty} \epsilon_i = 0$
3. disjoint subcontinua $\{Y_j\}_{j=1}^\infty$ of Y

such that

1. Y is homeomorphic to X
2. each G_i has at most k simple closed curves
(3) \(\{\pi_i(Y_n)\}_{i=1}^n \) are all disjoint in \(G_i \)
(4) \(d_H(G_i, f_i^k(\pi_k(Y_n))) < \epsilon_n \) for every \(k \) and \(n \geq i \).

Furthermore, if \(Y_n \) is chainable, then \(\pi_i(Y_n) \) is an arc for each \(i \geq n \).

PROOF. By Corollary 45 there exists a 1-dimensional proper taut open cover \(\mathcal{U}_1 \) of \(X \) such that

(1) the nerve of \(\mathcal{U}_1 \) has at most \(k \) simple closed curves
(2) \(\text{mesh}(\mathcal{U}_1) < \frac{1}{5} d(X_1, X_2) \)
(3) if \(X_1 \) and \(X_2 \) are chainable, then the nerves of \(\mathcal{U}_1(X_1) \) and \(\mathcal{U}_1(X_2) \) are arcs.

Then let

\[0 < \epsilon_2 < \frac{1}{3} \min\{\{d(X_k, X_m)|k \neq m \text{ and } k, m \leq 3\}\} \cup \{d(X_k, (\mathcal{U}_1 - \mathcal{U}_1(X_k))^*)|k \leq 3\} \].

Continuing inductively, suppose that \(\mathcal{U}_1, \ldots, \mathcal{U}_{n-1} \) and \(\epsilon_1, \ldots, \epsilon_n \) have been found. Then by Corollary 45 there exists a 1-dimensional proper taut open cover \(\mathcal{U}_n \) of \(X \) such that

(1) the nerve of \(\mathcal{U}_n \) has at most \(k \) simple closed curves
(2) \(\text{mesh}(\mathcal{U}_n) < \epsilon_n \)
(3) \(\mathcal{U}_n \) refines \(\mathcal{U}_{n-1} \)
(4) if \(\{X_j\}_{j=1}^{n+1} \) are all chainable, then the nerves of \(\{\mathcal{U}_n(X_j)\}_{j=1}^{n+1} \) are all arcs.

Next let

\[0 < \epsilon_{n+1} < \frac{1}{3} \min\{\{d(X_k, X_m)|k \neq m \text{ and } k, m \leq n+2\}\} \cup \{d(X_k, (\mathcal{U}_n - \mathcal{U}_n(X_k))^*)|k \leq n+2\} \].

Notice that in the above construction, \(\mathcal{U}_j(X_k) \cap \mathcal{U}_j^*(X_n) = \emptyset \) for \(k, n \leq j \) and

(1) \((\mathcal{U}_j - \mathcal{U}_j(X_k))^* \cap \mathcal{U}_{j+1}^*(X_k) = \emptyset \)

for \(k \leq j + 1 \).

Let \(f_j : N(\mathcal{U}_{j+1}) \longrightarrow N(\mathcal{U}_j) \) be the induced vertex map, \(G_i = N(\mathcal{U}_i) \) and \(Y = \lim \{f_i, G_i\}_{i=1}^\infty \). It follows from the Anderson-Chochet Embedding Theorem [1] that \(Y \) is homeomorphic to \(X \).

By Lemma 42, for each \(n \), there exists a positive integer \(i(n, \epsilon_n) \) such that

\[d(f_j^*(V_i), G_j) < \epsilon_n \] for each \(j \in \{1, \ldots, n\} \) and \(i \geq i(n, \epsilon_n) \). Since \(d_H(X_n, X) \to 0 \) as \(n \to \infty \), there exists a positive integer \(\alpha_n \) such that \(X_{\alpha_n} \cap U \neq \emptyset \) for every \(U \in \mathcal{U}_{i(n, \epsilon_n)+1} \). Therefore, by Lemma 42, \(Y_{i(n, \epsilon_n)} \subset f_{i(n, \epsilon_n)}^*(N(\mathcal{U}_i(X_{\alpha_n}))) \) for each \(i > i(n, \epsilon_n) \). It follows from (1) above that \(f_i(N(\mathcal{U}_{i+1}(X_{\alpha_n}))) \subset N(\mathcal{U}_i(X_{\alpha_n})) \).
For \(i \geq i(n, \epsilon_n) \) let \(Y^n_i = \bigcap_{j=i}^{\infty} f^j_i \left(N(U_j(X_{\alpha_n})) \right) \) and for \(i < i(n, \epsilon_n) \), let \(Y^n_i = f^{i(n, \epsilon_n)}_i \left(Y^n_i(n, \epsilon_n) \right) \). Then define \(Y^n_i = \lim \{ f_i, Y^n_i \} \). Notice that \(Y^n_i(n, \epsilon_n) \subset Y^n_i(n, \epsilon_n) \) and \(\pi_i(Y^n_i(n, \epsilon_n)) = Y^n_i(n, \epsilon_n) \). Therefore \(d(\pi_i(Y^n_i), G_i) = d(Y^n_i, G_i) < \epsilon_n \) and the rest of the properties follow.

\(\square \)

References

